Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol ; 2024: 3840950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449520

RESUMO

Previous studies showed that bisphenol-A (BPA), a monomer of polycarbonate plastic, is leached out and contaminated in foods and beverages. This study aimed to investigate the effects of BPA on the myogenesis of adult muscle stem cells. C2C12 myoblasts were treated with BPA in both proliferation and differentiation conditions. Cytotoxicity, cell proliferation and differentiation, antioxidant activity, apoptosis, myogenic regulatory factors (MRFs) gene expression, and mechanism of BPA on myogenesis were examined. C2C12 myoblasts exposed to 25-50 µM BPA showed abnormal morphology, expressing numerous and long cytoplasmic extensions. Cell proliferation was inhibited and was accumulated in subG1 and S phases of the cell cycle, subsequently leading to apoptosis confirmed by nuclear condensation and the expression of apoptosis markers, cleaved caspase-9 and caspase-3. In addition, the activity of antioxidant enzymes, catalase, superoxide dismutase, and glutathione peroxidase was significantly decreased. Meanwhile, BPA suppressed myoblast differentiation by decreasing the number and size of multinucleated myotubes via the modulation of MRF gene expression. Moreover, BPA significantly inhibited the phosphorylation of P65 NF-κB in both proliferation and differentiation conditions. Altogether, the results revealed the adverse effects of BPA on myogenesis leading to abnormal growth and development via the inhibition of phospho-P65 NF-κB.

2.
Toxicol In Vitro ; 82: 105385, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35568131

RESUMO

The serine/arginine-rich protein kinase-1 (SRPK1) is an enzyme that has an essential role in regulating numerous aspects of mRNA splicing. SRPK1 has been reported to be overexpressed in multiple cancers, suggesting it as a promising therapeutic target in oncology. No previous studies reported the role of SRPK1 in cholangiocarcinoma (CCA) cells. This study aimed to examine the expression of SRPK1 and the effects of SRPK1 inhibition on the viability and angiogenesis activity of CCA cells using a selective SRPK1 inhibitor, SPHINX31. Here, we demonstrate that SPHINX31 (0.3-10 µM) had no inhibitory effects on CCA cells' viability and proliferation. However, SPHINX31 decreased the mRNA expression of pro-angiogenic VEGF-A165a isoform. In addition, SPHINX31 attenuated SRSF1 phosphorylation and nuclear localization, and increased the ratio of VEGF-A165b/total VEGF-A proteins. Moreover, when HUVECs were grown in conditioned medium from SPHINX31-treated CCA cells, migration slowed, and tube formation decreased. The present study demonstrates that targeting SRPK1 in CCA cells effectively attenuates angiogenesis by suppressing pro-angiogenic VEGF-A isoform splicing. These findings suggest a potential therapeutic treatment using SRPK1 inhibitors for the inhibition of angiogenesis in cholangiocarcinoma.


Assuntos
Colangiocarcinoma , Proteínas Serina-Treonina Quinases , Arginina , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/uso terapêutico , RNA Mensageiro , Serina , Fatores de Processamento de Serina-Arginina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Mar Drugs ; 19(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946151

RESUMO

Sulfated galactans (SG) isolated from red alga Gracilaria fisheri have been reported to inhibit the growth of cholangiocarcinoma (CCA) cells, which was similar to the epidermal growth factor receptor (EGFR)-targeted drug, cetuximab. Herein, we studied the anti-cancer potency of SG compared to cetuximab. Biological studies demonstrated SG and cetuximab had similar inhibition mechanisms in CCA cells by down-regulating EGFR/ERK pathway, and the combined treatment induced a greater inhibition effect. The molecular docking study revealed that SG binds to the dimerization domain of EGFR, and this was confirmed by dimerization assay, which showed that SG inhibited ligand-induced EGFR dimer formation. Synchrotron FTIR microspectroscopy was employed to examine alterations in cellular macromolecules after drug treatment. The SR-FTIR-MS elicited similar spectral signatures of SG and cetuximab, pointing towards the bands of RNA/DNA, lipids, and amide I vibrations, which were inconsistent with the changes of signaling proteins in CCA cells after drug treatment. Thus, this study demonstrates the underlined anti-cancer mechanism of SG by interfering with EGFR dimerization. In addition, we reveal that FTIR signature spectra offer a useful tool for screening anti-cancer drugs' effect.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Galactanos/farmacologia , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Enxofre/farmacologia , Antineoplásicos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cetuximab/farmacologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Galactanos/metabolismo , Humanos , Microespectrofotometria , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Compostos de Enxofre/metabolismo , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...